SMALL PERTURBATIONS OF PLANE UNSTEADY MOTION
OF AN IDEAL INCOMPRESSIBLE FLUID WITH A FREE
BOUNDARY IN THE SHAPE OF AN ELLIPSE

V. V. Pukhnachev UDC 532.517

The problem about small perturbations is solved explicitly. An investigation of the behavior
of the solution as t — = shows its boundedness in a weak "potential” metric. Meanwhile, the
perturbation vector of the free boundary of the ellipse grows without limit with time.

1. FORMULATION OF THE PROBLEM

It is known that the equations of plane potential motion of an ideal incompressible fluid admit the ex~
act solution

u=tt="2, v=—Taq=—1y (1.1)
= et (E -+ 0 —1)

Here £, n are the Lagrange coordinates, and x, y the Euler coordinates, t is the time, the dot at the
location of g prime indicates differentiation with respect to t, and the function 7 (t) is given by the relation-
ship

(VFF1 =k etz o

1
The solution (1.1) admits of simple interpretation: at t=0 the velocity field
uozl/zﬁk&‘:}/zﬁkx’ Uo:—l/zﬁkn:—l/zl/—z—k
is given in the circle Q (% +n2%<1).

As t grows the circle @ is deformed into an ellipse Q¢, whose semimajor axis is T — «, and the seml—
minor axis is T ~!—0. The boundary of the ellipse remains free for all t=0.

Let us examine another solution of the equations of plane potential motion in the same domain Q of
the Lagrange coordinate plane, but with an altered initial potential

Fo* (5, M) = @ (&, 1) + @y (§,m), AD, =0
Qo = 27k (8 —n?)

Here ¢, is the value of the main flow potential (1.1) at t=0, and &, is the initial perturbation potential.
Assuming the initial perturbation ® small, we can study the problem of evolution of small perturbations in
a linear formulation. The equations of small potential motion perturbations with a free boundary were de-
rived by L. V. Ovsyannikov [1]. In the case of the fundamental solution (1,1) they are

1
TP+ 7Dy =0 @it >0 (1.3)
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2k 1 3 9
O = — = < 2 B0, + v, df (1.4)

E+nr=1,t>0

o

The initial condition
®E, 7,0 =D, (5, M), AD, =0 (1.5)
should be added to these equations,

The solution of the problem (1.8)-(1.5) as t —« is investigated below; the results permit making de~
ductions on the stability of the main flow (1.1) relative to the potential perturbations,

Let us note that there is not presently any general approach to the study of the stability of unsteady
fluid motions with a free boundary. Each such stability problem must be examined individually. Up to now
only plane problems have been investigated in which the free boundaries are lines or circles [2, 1] (see [3],
also). By analogy with the motion examples considered, L. V. Ovsyannikov expressed the hypothesis that
the motion described by (1.1) will be unstable. The solution of the problem (1.3)-(1.5) is constructed ex-
plicitly below, An analysis of the asymptotic of the solution as t—= confirms this hypothesis.

2, CONSTRUCTION OF THE SOLUTION OF THE PROBLEM

Let us go over to the independent variable 7 instead of t in (1.3), (1.4). By virtue of (1.2) the cor-
respondence between 7 and t is one~to-one for 7= 1 (t=0). Let us replace the desired function

2 e
® €)= 7 () W G )
and let us differentiate the transformed equation (1.4) with respect to 7. Consequently, we obtain in place

of (1.3), (1.4)

g W, =0 @<, v>1) @.1)

We: + —-rT~2}T1__ <':—2 Ewy 4 twy) 1 (Dw =0 2.2)
E+m=1v>1)
Here

2%8 - Trt -2
M= Ay

Let us write down the initial conditions for these equations. From the definition it follows that
D=w, P,=w.—Yw at T=1
According to (1.4), (1.5) we have
OD=00;, P,=0 ar v=1
Hence
w=2w,=Dy(E,M) at T=1 (2.3)
The function €, is harmonic in a circle 2, hence it is sufficient to give ¥, on the circle I'(¢2+n%=1)

D, r=%®), 0— arctgin/E)

Let us consider the periodic function ¥ given by its Fourier series

$(0) = D (focosn8+ g,sinb) -+ fo

Nn==]

Without limiting the generality, we can assume f=0. Indeed, if f,=g,=0 (=1, 2, ...}, then the unique
solution of the problem (2.1)-(2.3) is ® =f,=const.

Now, let us formulate the problem (2.1)-(2.3) in terms of the boundary function z

z(0,0) =w(En ) r
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It is clear that the value of z permits unique determination of w in the circle € as a solution of the
Dirchlet problem for (2.1). Let us introduce an operator K acting according to the rule: a function w(,n,
7), is found by means of z(¢, 7), which satisfies (2.1) in the circle @ and the condition wlr =z, and then

K()z=1"uwg + vnwy a8+ =1 2.9

The problem (2.1)-(2.3) can be considered as a Cauchy problem for an equation with nonlocal op-
erator K

bt e K (D)2 +7 ()2 =0 @.5)
2(0 + 27, 1) =z (8, 7) @.6)
z (8, 1) = 2z (8, 1) =¥ (0) 2.7

Equation (2.5) is (2.2) rewritten in a new notation, and (2.7) are the initial conditions (2.3) written on
the boundary I' of the circle .

As has been remarked above, without limiting the generality we can consider the mean value ¥(8) to
be zero, Let us show that then for r > 1

9

y = z0vd=0

Q

(2.8)

On the basis of (2.7) we obtain x(1)= x, (1})=0. Let us integrate (2.5) with respect to ¢ between 0 and
2r, Taking into account that

2n
| K2do = [ (v*we + ) dT = [ (Towes + Tw4) dQ =0
k t Q

g
we find the following equation for y:
£33 + r (T) X = 0

Thus the function y is a solution of the homogeneous Cauchy problem for the linear equation, which
indeed yields (2.8).

Let L,'(0, 27) denote the subspace of the Hilbert space L,(0, 27) generated by functions with zeromean
value, It follows from (2.8) that if the solution z(@, T7) of the problem (2.5)~(2.7) belongs to L,(0, 27) for
fixed T > 1, then it also belongs to L,'(0, 27).

Let us examine a number of properties of the operator K. Let us fix the value 7 =1, The operator
K is not defined in the whole space L,'(0, 27). Itis,however, defined in all trigonometric polynomials with
zero free member, i.e., in a compact set in L,'(0, 27). Thus, the unbounded operator K has a compact do-
main of definition D(K) in L,'(0, 27). Let us show that it is symmetric and positive-definite, Indeed, if
z, 7 € D(K), then
on _ an

{ 2Kado = | w (v-25ws + Pw,) dl' = ij (v%tw, 4 ) dl = | 2Kzd6

r : ¢

L]
2n

j z2Kzd0. = jlw (t~%wy + nw,) dl' = 5 (vfwe? + t*w,?) dQ
(] r Q

QED. (The definition (2.4) of the operator K and the Green's formulas for the solutions w, w of (2.1) were
used in writing these latter equalities.) It follows from the listed properties of the operator K that it ad-
mits of self~adjoint expansion {4], which we again denote to be K. Moreover, the operator inverse to K is
completely continuous. This permits the conclusion that the operator K has a complete system of eigen-

functions in L,'(0, 27) (for any T =const= 1), It turns out that they can be written down explicitly.

Proposition 1. For any natural n the functions cos né and sin nf are eigenfunctions of the operator
K, to which the eigennumbers

A, = n thns (v), pn = ncthns(z), s{t) = ar th v

correspond.
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Proof. Let us go over to elliptical coordinates p, ¢ in (2.1), (2.4) by means of the formulas

3 . n
chpcosq:VTt—l—, Shpsmq:VT———_i_ (2.9)

By means of (2.9) the circle Q is mapped into a circle given in the polar coordinates p, g by the re-
lationships

p < s = arthi?, 0 g<<an
Equations {2.1) go over into the equations
Wt Wee=0  Wppgn=wEn1

The relationship (2.4) becomes

Ke= S for pes  (=W|.) 2.10)
(it is kept in mind that the right side is here expressed in terms of 6, 7).
The equation Wpp +qu: 0 has the particular solutions
Win = (chnij™ chnp cosng 5 ) 2.11)

W, = (sh ns)~'sh np sin ng

Solutions of (2.1) regular in the circle © correspond to these solutions. Hence

Wi, = cosng, Wy, =sginng for p=s

i) 1% .
W in = n th ns cos ng, 3 2" — pcthnssinng

14

Assuming z, =cos nf, Zy, = sin n6, and taking into account that q= # =arc tan n /£ for p=s we obtain
from these latter equalities and (2.10) that

sz:}uz Kz

n“1n’ 2n =Ha%an.

Proposition 1 is proved.

The fact that the eigenfunctions of the operator K are independent of T is quite important. This af-
fords the possibility of separating variables in (2.5). Let us seek the solution of this equation as an eigen-
function series

2(8,7) = D 1.0, (T) cos n8 + g,.b,, (t) sin nb] {2.12)
n=1
Here fp, gp are coefficients of the Fourier series expansion of the initial function #(8), and a,(7),
by () are functions to be determined.

The solution (2.12) will satisfy the condition (2.6) if we assume
an (1) = b, (1) = 2a," (1) = 2b," (1) = 1 (2.13)

(the prime denotes differentiation with respect to 7). Substituting (2.12) into (2.5) results in a decomposing
system of ordinary differential equations for the functions

" 2n th
0+ [ZRBE 4 )]e, =0
B (2.14)
” 91 cth ns
b+ [ 4y ()] b, =0
Therefore, seeking the solution of the nonlocal Cauchy problem (2.5)-(2.7) reduces to solving the

Cauchy problem (2.13), (2.14) for ordinary equations. Knowledge of the function z permits us to write down
the solution of the problem (2.1)-(2.3) without difficulty, and this means the desired function ®(£, n, 7) also,

Indeed, w is a solution of the Dirichlet problem for (2.1) with the condition Wi = Z.

The quantity 7 enters into (2.1) as a parameter; hence, to determine w it is sufficient to solve the
given problem z =z, =cos né and z=z, =sinné (nis natural and fixed). But, as is clear from the proof
of Proposition 1, the solution of such a problem is given by (2.11). Let us formulate the final result, The
solution of the problem (1.3)-(1.5) is



®=v(z2)" 3 [faan (055 B cosng (6.1, 9) + gbn (1) Z52ED D sin ng (8,1, 1) (2.15)

™41 = chns (1) sh s (1)
Here the functions p, q(0 <p=<s, 0=q <27) are found from (2.9), s=arth T '2, 7 is related to t by
means of (1.2). The functions a,(T), by, (T ) are a solution of (2.14) with the conditions (2.13).

Let us note that the solution constructed for the problem (1.3)~(1.5) is unique, The uniqueness the~
orem for more general problems of the small perturbations of unsteady ideal fluid motion with a free
boundary has been proved in [1, 3].

3. ASYMPTOTIC BEHAVIOR OF THE SOLUTION

To obtain the asymptotic solution of the problem (1.3)-(1.5) for large t it is necessary to know the
behavior of solutions of the Cauchy problems (2.13), (2.14) as T —=, since T = kt[1+0O (%] for large t in
conformity with (1.2).

Let n be fixed. Let us examine (2.14) for large 7. Taking into account that
s=124+0@"%, r=—-2t2+0( "% for T 00
we have '
a," +[— 2120 (1 %Ha,=0, b +0(THb,=0 for T— 00

We hence find the asymptotic representation of two linearly independent solutions of each of the equa-
tions (2.14) as T —+ =

apy =T [1 4+ 0 (Y], Qg =T [1 40 (2]

an =2tv[1 + O0(zY)], Apy' = — 1214 0(1Y)] (3.1)
buy=7[1+0 ], buy =1 +0(v7)
by =140 (™), by’ = 0 (7™

If we limit ourselves to an examination of an individual harmonic (this means that all the coefficients
Sns 8n in (2.12) are zero except for one), then the last formulas are sufficient to prove the boundedness of
the solution ® of the problem (1.3)-(1.5) as t — o,

Indeed, in this case it follows from (3.1) that z(6, 7)=0 (t uniformly in 6 as T— <, Since

O =) 00 6.2

then the boundedness of &1 hence results as t —«. By virtue of the maximum principle for (1.3), the func-
tion ® will be bounded as t —= for any £, n € (1,

Now, let the initial function $ @) be an arbitrary element of L.J (0, 27). It turns out that even in this
case the solution of the problem (1.3)-(1.5) is bounded in the following sense:

S @ p2dT < Co |V |E, >0 (3.3)
r

27t 2
[ble. = (S v () de) :,[

. 0

oo 12
AR gm}
n=1

Here Cy, k=0, 1, 2, ... denote positive constants. The proof of the estimate (3.2) is based on the
following proposition.

Proposition 2, The solution of each of Eqs. (2.14) with the initial conditions (2.13) satisfies the in-
equalities )

la, (v)| < Cy max (v, 7V 1), |b, (7) [ < Cot (3.4)
la,’ (7)< C; max (V n/t, ©/V7), |b, (1)]<C; max (V'n/v, 1) (3.5)

t=1,n=1,23,...)
The proof of this proposition is elucidated inSec. 4,

The inequality (3.3) is a simple consequence of (3.2) and the estimates (3.4). The results obtained
about the boundedness of H<I>p I L, a8 t = = can be treated as the stability, in a linear approximation, of
the main solution in a potential metric.
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1t should be noted that in the particular case when all f,, =0, there results from (3.2), (3.4) that
K] rll L, =0 (t!) as t —=. Moreover, if g,,=0 for odd n, then the solution & defined by (2.15) will be an

even function of £ and an odd function of 7.

The solution even in £ describes the motion with an impermeable wall £ =0, hence, such motion is
asymptotically stable in a potential metric relative to perturbations odd in 7.

Together with (3.2), (2.12), the inequalities (3.5) permit the proof that the following estimate for the
derivative & is true:

D2l dT < Cy D) n(fe? + g3

§ d (3.6)

under the condition that the series in the right side converges. The demand for its convergence is equi-
valent to the initial function ¥ (8) belonging to the Sobolev-Slobodetskii space Wzl 20, 2m).

By raising the smoothness of ¥(6), estimates can be obtained for higher order derivatives of . In
particular, if § € W,'(0, 27), where W,! is the Sobolev space [4], then & |, <I>-'§I1~ , ‘I’nll“ belong to L,(0, 2m)
for fixed t, where their norms in L, are bounded for all t >0, If § € W22(0, 2m), the the functions z; ., Kz
in (2.5) are continuous in 6, T, and this equation is satisfied in the classical sense.

From the physical viewpoint it is interesting to obtain estimates of the velocity field originating dur-
ing perturbation of the main flow (1.1). In conformity with [1], the projections U, V of the velocity vector
perturbations are calculated by means of the formulas

t £
a 1 N I O g 3.7
U:W(TS . rDEdt>, VA_M-(T Std)ﬂdt) (3.7)
0 N 0

/

For simplicity, let us limit ourselves to the examination of one harmonic. Let the subscript ¢ hence-
forth denote the solution corresponding to the initial function § =f,, cos né, and the subscript s the solution
corresponding to =gy, sin nf. The analysis of the asymptotic U, V as t — « starts from (3.7), (2.15}, (3.1).
This analysis requires many computations and is not presented here. It shows that for x, y € Q4 and t —
the quantities Ug, Ug increase linearly in t near the ends of the major axis of the ellipse Qi, Vg is bounded,
and Vg —o,

The results presented above favor the stability of the main flow in a linear approximation if the
norm of the potential perturbation or its derivatives in L, is taken as the measure of stability. However,
if the stability is judged by the deviation of the free boundary from its unperturbed state, then the motion
(1.1) should be acknowledged unstable. It is most convenient to characterize the perturbation vector of the
boundary of the ellipse £ by its normal component R to T'y (see [1, 3] for the definition and geometric mean-
ing). The quantity for the main flow (1.1) is given by the equality

_ (* +1y
R=~ 25272 (cos? B - 14 sin? 0) Dilr (3.8)

Using (3.2) and (2.12), a representation for R can be obtained as a Fourier series with coefficients
expressed in terms of an(7), bn('r ). As before, let us limit ourselves to an examination of individual har-
monics, and we find:

for the c-solution

. fn@ 4 ) cosnd o 9 A
Ao = — Sk or 0 ¢ wsinrd) _d‘r—l:T (—;;—1:1—) ay, () (3.9)
for the s-solution
R — gn (vt +1)72sinng d 2 )%b 1
+= T Treortr s @ | \wa1) o] (3.10)

Since n is fixed in these relationships, it is then sufficient to use (3.1) to obtain the asymptotics Re»
Rg as t —; consequently, we obtain as t—o

12cosn

Rc = o2 8 T risin0 [ann +0 (T-l)] (B = const) (3_11)
¢ ¢in nB N
R, = Wg_:l;.—r;a‘{e— [827n + 0@ ™) (1, =const)
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Let € >0 be fixed. It is seen from (3.11) that outside the zone | ] <&, | 7~ @] <& the estimates
=0 (™9, Rg=0 (1) are valid as t — (let us recall that T ~kt for large t). Therefore, the instability of
the free boundary is manifest near the points 6 =0, ¢ =7 of the circle I" in the Lagrange coordinate plane,

Let us examine the behavior of Rg, Rg as t—=, § —0. (The analysis of the case § — 7 is analogous).
According to (3.11), if t |6 |=const as t —, then the quantity R still remains bounded. If t'¥7 |9 | =const,
0=6=1, as t —=, then R, ~t20,

The maximum growth R, ~t* is observed in the domain t? | 0] <const. Hence, R, retains its sign
near 6 =0.

The instability of the free boundary for the s-solution is developed differently. In this case we have
Rg ~t0 under the condition t¢ | 8| =const (0= 6= 2), whent— =, The greatest growth Rg ~t? occurs when
0 and t are related by the relationship t? |6 |~1 as t — =, where Rg changes sign in the nelghborhood of
6 =0; Ry is bounded if | 6] =O (™), Rg=0 for 6 =0.

It is interesting to estimate the size of the free boundary instability zone in Euler coordinates. The
boundary of the ellipse Ty has the equationT=2x?+7 %y2=1, The point (x=7, y=0) in the xy plane corresponds
to the point (¢=1, n =0).

Let us estimate the distance Ax along the axis from the end of the semimajor axis of the ellipsex=7,
y =0, to the points on I't, where 6 ~t~!, Taking into account that

8 = arc tg (v/ &) = arc tg (v%y / x)
we find
Az =0 (™) for t—> o0 (3.12)"
Thus, in the case of the c-solution the free-boundary instability is localized near the ends of the major
axis. The size of the instability zone is estimated by the relationship (3.12). In particular, we apply this
deduction to the problem of stability of the motion (1.1) with an impermeable wall 7 =0, As t— = the fluid
is squeezed to the wall, and this stabilizes the free boundary outside the mentioned instability zones. A

similar stabilizing effect has been detected in [1, 3] in investigations of the simpler problem of stability
of a liquid bar under a stamp.

Examining the s-solution, we conclude that the quantity increases according to the law R ~t0 ata
distance Ax=0 (tl‘2 ), 0=0=2 from the ends of the major axis of the ellipse. In this case the free—boundary
instability domain increases without limit in the xy plane as time elapses. (However, let us note that the
maximum instability domain, where Rg ~t?, diminishes in proportion to t™3,) This result is even more inter-
esting since their tendency to zero in a potential metric was proved above for the s-solution as t —o,

4. PROOF OF PROPOSITION 2

The validity of (3.4), (3.5) for any fixed n results substantially from (3.1). In order to prove the di-
mensionality of these estimates relative to n, the behavior of solutions of the Cauchy problem (2.13), (2.14)
should be studied as n —,

Let us examine the first of (2.14). The coefficient of ay in this equation is the sum of two components.
The first component will be the principal one for n — « and 7« vn, and the second for 7>>vn,

Hence, the solution of the Cauchy problem is considered first for a, in the interval {1, av1]; then the
solution is continued into the interval [avn, =), We select the constant @ > 0 below,

Reasoning used to study the asymptotic of eigenfunctions of the Sturm-~Liouville problem (see [5], say)
is used in analyzing the solution for large nand 1< 7 =avn. Let

Q = 2 (¥ + 1)1 th ns (1) 4.1)
and let us introduce new variables by using the substitution

Comr . 4.2)
o =S Q@I*dL, o =[Qmi%e,
1

This substitution converts the interval 1= 7 = &vVn into the interval 0 =0 =<7,, and (2.14) for ay into

@0/ do® + no = p (0) © 4.3)
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502 r
PO) =727 — 6@ —Q “.4)

The right side of (4.4) is considered as a function of o, The function p(o) is continuous in the inter-
val [0, I4] and because of (4.1), (4.2) admits of the estimate | p|= C,T 2 for any natural n. Here 7 (0) is a
function defined first from (4.1). On the basis of (4.1), (4.2) we have

r(in)zoc}/I—a, T2ds/dr»1 where 0o,

Hence
t<a Vall+a Ve, —al
This results in an explicit estimate of [p| as a function of &
o< Cwtn [t 2 Vil,—o) 4.5)
Let us turn to (4.3). Conditions (2.14) generate initial conditions for this equation
o @ =1, o ©0) =0

The solution of (4.3) with these initial conditions satisfies the Volterra integral equation [5]

® (6) = cos n'is + n~* S sinn' (s — &) p () 0 @) dE (4.6)
0

Applying successive approximations, we obtain the solution of (4.6) in the form w=lim wy, k —,
where wy=cos nt/ %5, and the function wy is defined by (4.6) for k=1, in whose right side wis replaced by
wi_q+ Using (4.5), we find the following estimate for the kernel of (4.6):

4

w o @ sinn (6 - g at| < 20
¢

Let us select a less than V2C4, and let us fix it. Then the successive approximations will converge
uniformly to the solution w({g) of (4.6) for all o €[0. I,] and sufficiently large n, where the function w
is uniformly bounded for 0 =6 =1y, n—co,

In conjunction with (4.2) this results in the estimate [a,| =< cs7 for 1=7 =aVn. The estimate for
ay' is obtained by differentiating (4.2) and (4.6). It is

la, | < Con'er
Now, let us examine the first equation in (2.14) in the interval [®, vn, »), Let us make the change

in variable a, =vnAy, T =Vn¢ in this equation, and let us extract the main term in the coefficient of the
equation obtained for Ap. We will have

dzA, +[* 2 4 2 th 1 J—O(n_zg—')}A =0 f I>d, n—oo
— - T n =0 for =0y “4.7)

Let us pose the Cauchy problem for this equation
A, =n""q_(an'), dA, [df=a,’ @n'?) for L=a |

From the estimates obtained earlier for ap, ay' for 1=7 =avn, we conclude that A, (@), dAp@)/d¢
are uniformly bounded in n as n— ., There hence results that the solution of the Cauchy problem for (4.7}
is estimated thus:

[ 4,10l |84,/ d0I SO for =
Now going over to the variables ay, 7, we obtain
la, | <Cew/ Vs o/ [SCx( VR for v2aVr
The inequalities (3.4), (3.5) for a, are proved.

The behavior of the solutions of the second of Egs. (2.14) with the initial conditions (2.13) is investi-
gated analogously for large n. The difference is only that in the last stage the equation
@B, 2 2 1 o
[ roejr -0
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is obtained in place of (4.7) for Bn=n_1/2bn, and for its Cauchy problem with the values B,(@), dB,(0)/d¢
bounded as n— «, The inequalities

[B IS CL, dB, JdE[SCr for [>a

are valid for B,
Consequently, we obtain the estimates

b, | <Cit {8/1<Cr for T>0Vn

This completes the proof of Proposition 2.

The author is grateful to L. V.Ovsyannikov and R. M. Garipov for discussing the research.
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